
Created: February 19, 1999

Modified: March 1, 1999

 wfs_sbh_004/01 1 of 46

Gemini
Wavefront
Sensing
System
Report

ospLib- Optical Signal Processing
Library for Wavefront Sensing

Steven Heddle

wfs_sbh_004/01

This document is the reference manual for ospLib

1.0 Introduction

The signal processing library for the wavefront sensors is contained in three main files, ospLib.c,
ospInvertFuncs.c and the header file osp.h. The bulk of the functions are contained in ospLib.c,
with ospInvertFuncs.c containing only the SVD related functions, and functions to perform
matrix and vector operations. The functions in ospInvertFuncs.c without an osp prefix have been
taken fromNumerical Recipes in C, and the necessary header file support for these functions has
been incorporated into osp.h. The signal processing library makes use of the cfitsio library for
input and output of test and calibration data in FITS format. The library may be run under
VxWorks or Unix.

The library has been designed to support the operation of peripheral and on-instrument wavefront
sensors to provide fast guide data (tip, tilt and focus) to the reflective memory bus, or active
optics data (includes higher order Zernike coefficients) at a slower rate to the telescope control
system. The raw data frames of Shack-Hartmann spots to be centroided are supplied by an
SDSU-2 CCD controller, which allows the readout geometry of the CCD to be specified by the
user, subject to the symmetry constraints imposed by the individual sectors of the CCD array.
The operation of the library functions is dependent on a number of mode (i.e. fast guide or aO)
dependent variables, and a number of variables describing the readout geometry, so in order to
manage function arguments, and ensure reentrancy of shared code used by a number of wave-
front sensors simultaneously, we invoke the concept of a context structure which allows the elim-
ination of global and static variables which might be modified. A structure of this type (struct
OSP_CONTEXT) is created for each mode of each wavefront sensor, and its pointer passed as an
argument to the ospLib functions where appropriate. A more detailed description of the context
structure occurs at the end of this document, but we note that the structure also stores calibration
data and results from application of the library functions, including ultimately Zernike coeffi-
cients and their standard errors. An additional structure (struct OSP_GEOM) is used to imple-
ment changes of CCD readout geometry.

Summary of ospLib functions

2 of 46 wfs_sbh_004/01

2.0 Summary of ospLib functions

The ospLib functions are listed here in approximate functional groupings. The source code
is in ospLib.c unless stated otherwise.

2.1 Initialisation

ospInit : To create and initialise a wfs context structure

ospNewReadCentres : To calculate coordinate data for the subaperture null positions from
data stored in file

ospReadNulls : To read the coordinates of the null positions from a file

ospTidyUp : To free all the memory allocated from the corresponding ospInit()

2.2 Measurement

ospFGMeasure : To calculate Zernike coefficients from a frame of SH spots, and write
them to the synchro bus

ospFGCentroidWrapper : To perform offset correction, thresholding and centroiding on a
data frame quickly for fast guiding

ospMeasure : To accept an input frame of SH spots and calculate the Zernike coefficients

ospThreshold : To estimate and/or impose a threshold for each subaperture to reduce the
effects of noise

ospCentroidWrapper : To threshold the frame and repeatedly apply the ospCentroid()
function to every subaperture with a specified centre

ospCentroid : To calculate the centroid position and its standard deviation for a subaperture

ospCoAdd : To co-add frames, either a specified number or timeout period's worth

ospGlobalThreshold : To apply a common threshold to an entire frame

ospGlobalCentroid : To determine the centroid of an entire frame, in pixels

ospMeasVars : To estimate the measurement variances of the calculated Zernike coeffi-
cients

ospAddFrameToFrame : To add a frame to an existing frame of the same size, pixel by
pixel

Summary of ospLib functions

 wfs_sbh_004/01 3 of 46

ospSubtractFrameFromFrame : To subtract a frame from an existing frame of the same
size, pixel by pixel

ospMultiplyFrameByFrame : To multiply a frame by an existing frame of the same size,
pixel by pixel

ospAddConstantToFrame : To add to each pixel in a frame the same specified amount

ospMultiplyFrameByConstant : To multiply each pixel in a frame by the same specified
amount

2.3 Readout geometry change

ospCalculateSubaps : To calculate the coordinates of the subapertures and null positions
wrt to the readout geometry

ospChangeGeometry : To adapt the wfs context to changes in detector readout geometry

ospReduceFrame : To reduce the frame size to the minimum containing all subaperture
pixels

2.4 Calibration

ospCalibrate : To populate a reconstructor matrix and invert to obtain control matrix

ospSaveNullPositions : To create or update null positions data from a calibration file

ospFitVars : To estimate the fitting variances of the calculated Zernike coefficients

ospGetBasisFunction : To populate the matrix which defines an arbitrary basis set in terms
of Zernike polynomials and their coefficients

ospNewCalibrate : To populate a reconstructor matrix and invert to obtain control matrix

ospNullCorrection : To provide a simple interface by which the null positions file can be
corrected using a FITS image of nulled spots

2.5 Testing

ospTestData : To generate a known test frame of data

ospSimulateCentroids : To generate centroid data for a specified combination of Zernike
functions

ospFrameScramble : Scramble an entire frame of data

ospFrameTypeConvert : To convert a frame of floats to a frame of unsigned short ints, or
vice-versa

Summary of ospLib functions

4 of 46 wfs_sbh_004/01

ospConvertAndScrambleFITS : To convert a float FITS image to ushort int, scramble it
and write it to file

2.6 FITS application code

The following functions require the cfitsio library available from

http://heasarc.gsfc.nasa.gov/fitsio

ospReduceFits : To generate a reduced frame FITS file from a full frame FITS file

ospReadHeaderInt : To read the integer values of an array of keywords from a FITS header

ospAddContextToHeader : To write ccd readout geometry to a FITS header

ospPrintHeaders : To print out all the header keywords in all extensions of a FITS file

ospReadFloatImage : To read a float image into a buffer from a FITS file

ospReadUShortImage : To read an unsigned short int image into a buffer from a FITS file

ospPrintError : To report cfitsio errors, as related to the status codes in fitsio.h

ospWriteFloatImage : To write a float image to a FITS file

ospWriteUShortImage : To write an unsigned short int image to a FITS file

2.7 Matrix and vector handling

These are a number of general functions to ease the manipulation of matrices and vectors,
and allow reading and writing from file. The source code is in ospInvertFuncs.c. These func-
tions are not documented in the next section, but are commented in their source.

ospReadVectorFromFile : To read a vector of specified size from a file

ospWriteVectorToFile : To write a vector of specified size to a file

ospReadMatrixFromFile : To read a matrix of appropriate format from a file

ospWriteMatrixToFile : To write a matrix to a file

ospApplyControlMatrix : To perform the matrix-vector multiplication that yields the
Zernike coefficients

ospCalculateInverse : To calculate the inverse matrix from the matrices resulting from sin-
gular valued decomposition

ospConditionOfW : To calculate the condition number of the singular valued decomposi-
tion

Summary of ospLib functions

 wfs_sbh_004/01 5 of 46

ospMatrixProduct : To form a matrix product

ospShowMatrix : To display the elements of a matrix

ospShowVector : To display the elements of a vector

2.8 Functions to communicate data to TCS and synchro bus

Functions written by Sean Prior to communicate the Zernike coefficents and their uncertain-
ties to the TCS or reflective memory bus. The source is in writeZernikes.c, but the functions
are prototyped in osp.h and are thus listed here for completeness. They are not documented
in the next section.

writeWfsToTcs : To write Zernike data to the TCS

writeWfsToSynchro : To write Zernike data to the reflective memory bus

2.9 Functions adapted/adopted from Numerical Recipes

These functions are described fully in Numerical Recipes in C (ISBN 0-521-43108-5), and
are not documented in the next section.

The first two functions are subject to copyright. The last four functions are part of the
Numerical Recipes Utility Routines which have been placed in the public domain and are
freely usable. The memory allocation invector andmatrix has been changed to use calloc()
rather than malloc().

pythag : calculate the square root of (a squared + b squared)

svdcmp : singular valued decomposition of a matrix

vector : allocate memory for a vector

matrix : allocate memory for a matrix

freeVector : deallocate memory for a vector

freeMatrix : deallocate memory for a matric

2.10 Other

ospShow : To display the current values of the wfs context

The following simple functions are used by the Numerical Recipes routines, and were for-
merly implemented as global declarations. They are not documented in the next section, and
their source is in ospInvertFuncs.c

SQR : To form the square of its floating point argument

IMIN : To establish the minimum of its two integer arguments

Description of ospLib functions

6 of 46 wfs_sbh_004/01

FMAX : To establish the maximum of its two floating point arguments

3.0 Description of ospLib functions

The functions are listed here in alphabetical order.

3.1 ospAddConstantToFrame - To add to each pixel in a frame the
same specified amount

INVOCATION :

 ospAddConstantToFrame(buffp1,constname,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To add to each pixel in a frame the same specified amount

DESCRIPTION : Adds to each pixel in an existing frame buffer pointed to by buffp1 the
floating point value constname. The frame is assumed to be wfsSpecific->xframesize by
wfsSpecific->yframesize No checking of the frame size is done, due to the function's
intended use of making corrections to fast guide data frames, which requires low latency.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the pointer points to a buffer which is already allocated
and large enough.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.2 ospAddContextToHeader - To write ccd readout geometry to a
FITS header

INVOCATION :

 ospAddContextToHeader (filename,wfsSpecific)

! buffp1 float * pointer to buffer to be added to

> constname float additive constant

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 7 of 46

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To write ccd readout geometry to a FITS header

DESCRIPTION : Opens FITS file for writing, and writes the following keywords and
comments into the header (values included by way of example):

XSTART = 11 / [pixels] ospxstart

YSTART = 11 / [pixels] ospystart

XBIN = 1 /pixel binning factor in x dirn.

YBIN = 1 / pixel binning factor in y dirn.

XRASTER = 8 / number of x superpixels across subap.

YRASTER = 8 / number of y superpixels across subap.

XSPACE = 2 / [pixels] number in x between subaps.

YSPACE = 2 / [pixels] number in y betweem subaps.

XSUBAP = 3 / number of x subaps. per output

YSUBAP = 3 / number of y subaps. per output

OSP_FSZ = 1 / framesizeflag (0:reduced,1:fullframe)

OSP_NP = 14 / no. of Zernike coeffs. calculated

OSP_MP = 64 / 2 x total number of subaps used in array

OSP_SIDE= 8 / [pixels] side length of subap

OSP_NSIG = 3.000000E+00 / nsigma

OSP_RDSQ = 3.600000E+01 / [e- **2] read noise per pixel sqared

OSP_WT = 0 / weighting applied? (0:no, 1:yes)

OSP_THR = -1.000000E+00 / argument supplied to ospThreshold

The FITS file is then closed.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

> filename char * name of FITS file to which

we add header info

> wfsSpe-
cific

struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

8 of 46 wfs_sbh_004/01

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : None known

3.3 ospAddFrameToFrame - To add a frame to an existing frame of the
same size, pixel by pixel

INVOCATION :

 ospAddFrameToFrame(buffp1,buffp2,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To add a frame to an existing frame of the same size, pixel by pixel

DESCRIPTION : Adds a frame pointed to by buffp2 to an existing frame buffer pointed to
by buffp1. The frames are both assumed to be wfsSpecific->xframesize by wfsSpecific-
>yframesize. The addition is done pixel by pixel. No checking of the frame size is done, due
to the function's intended use of making corrections to fast guide data frames, which
requires low latency.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the pointers point to buffers which are already allo-
cated and large enough.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.4 ospCalculateSubaps - To calculate the coordinates of the
subapertures and null positions wrt to the readout geometry

INVOCATION :

! buffp1 float * pointer to buffer to which frame is to

be added

> buffp2 float * pointer to buffer containing frame to

 be added

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 9 of 46

 ospCalculateSubaps(wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To calculate the coordinates of the subapertures and null positions wrt to the
readout geometry

DESCRIPTION : The positions of the bottom left hand corners of the subapertures (in pix-
els) are calculated using the ccd readout geometry stored in the context structure, with
respect to either a full frame or reduced frame as appropriate, and the null positions of each
subaperture which is to be used are calculated relative to these coordinates. This data is then
stored in wfsSpecific->centres[], with centres[0] storing the number of data items to follow
(which is four times the number of subapertures for which the null positions are positive val-
ues, which is clearly not necessarily the same as four times the number of subapertures).The
subsequent entries are centres[1] = x coordinate (in pixels) of bottom left hand pixel of first
subaperture with positive coordinates for its null position. centres[2] = offset in x (in pixels)
of null position from bottom left hand pixel of first subaperture... centres[3] = y coordinate
(in pixels) of bottom left hand pixel of first subaperture with positive coordinates for its null
position. centres[4] = offset in y (in pixels) of null position from bottom left hand pixel of
first subaperture... and so on in groups of 4 for subsequent subapertures with positive coor-
dinates for their null positions, i.e. centres[5] to centres[8] are the corresponding data for the
second subaperture with positive coordinates for its null position. The null positions used in
the calculation are those stored in wfsSpecific->nulls[], which use negative coordinates to
indicate that a subaperture is not to be used. The ccd readout geometry defines the positions
of the subapertures on the array, and the coordinates of the bottom left hand pixel of each
subaperture are calculated with respect to an x-y coordinate system which applies to the
whole array, and is not redefined for each sector. The calculation of the subaperture posi-
tions in each sector however takes account of the various symmetry properties of the sectors
with respect to each other. Note that the definition of the centre of the bottom left hand pixel
of the whole area of the array which is read out as (1,1) has been chosen for convenience
when calculating the subaperture positions in the various sectors. The ccd readout geometry
is defined in the following elements of the context structure:

sectors - number of

ospxstart - pixels in x skipped before first subap

ospystart - pixels in y skipped before first subap

ospxbin - binning factor in x for the pixels read out

ospybin - binning factor in y for the pixels read out

ospxraster - x size of the subapertures in binned pixels

ospyraster - y size of the subapertures in binned pixels

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

10 of 46 wfs_sbh_004/01

ospxspace - pixels in x between subapertures

ospyspace - pixels in y between subapertures

ospxsubap - number of subapertures readout PER SECTOR in x

ospysubap - number of subapertures readout PER SECTOR in y

xarraysize - x size of the frame supplied to the centroiding func.

yarraysize - y size of the frame supplied to the centroiding func.

framesizeflag - flag for full frame (1) or reduced frame (0) image

which correspond with the geometry shown most clearly in Gemini Newsletter #16, June
1998, p12. Currently there is no provision for binning (i.e. xbin=ybin=1), and as the null
positions in wfsSpecific->nulls are relative to the same full frame coordinate system, the cal-
culation of the offsets in x and y are simple differences. If binning is employed, some scal-
ing will also be necessary when calculating the offsets in x and y of the null positions. The
calculation of the centres[] data proceeds in one of two distinct ways dependent on whether
wfsSpecific->framesizeflag is 1 (indicating that a full frame is used) or 0 (indicating that a
reduced frame of only subaperture pixels is used). If framesizeflag = 1, our calculations are
complete and we have populated the centres[] array. If framesizeflag = 0, we need to recal-
culate the subaperture coordinates to reflect that only the pixels which constitute the subap-
ertures (including the unused subaps) make up the reduced frame. The offsets of the null
positions in x and y are unchanged. The offsets in x and y of the null positions for each sub-
aperture are checked to ensure that they are less than a quarter of the width of the subaper-
ture from its geometric centroid, and a warning flagged if this is not the case- the function
continues but exits with an ERROR value. An error value is also returned if the number of
subapertures which are to be used (which have positive coordinates for their null positions)
does not equal (wfsSpecific->mp/2), which is specified when the context structure is initial-
ised. If a subaperture has negative coordinates for its null position this is reported- this is not
an error. The data thus calculated is used by the thresholding and centroiding functions.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the null positions have been read in using ospRead-
Nulls, called either by itself or as a part of ospInit or ospCalibrate.

INCLUDE FILES : osp.h

DEFICIENCIES : No provision yet for binning of pixels

3.5 ospCalibrate - To populate a reconstructor matrix and invert to
obtain control matrix

INVOCATION :

Description of ospLib functions

 wfs_sbh_004/01 11 of 46

 ospCalibrate(calibpath, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To populate a reconstructor matrix and invert to obtain control matrix

DESCRIPTION : Calibration frames of displaced SH spots corresponding to linearly ide-
pendent combinations of known Zernike aberrations are used to form a reconstructor matrix
with respect to the basis functions defined by the linear combinations. This reconstructor
matrix is transformed into one with respect to the individual Zernike polynomials of unit
magnitude, and further inverted to provide the necessary control matrix which is applied to
the SH spot displacements in an arbitrary input frame to yield the Zernike coefficients. The
control matrix is written to a file specified by the character string wfsSpecific->controlfile,
and the calculated fitting variances written to a file specified by the character string wfsSpe-
cific->fvarsfile. If either of these files exist, they are copied to a file with a .bak extension
added, befeore the new version is created.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : Not general enough-need to prompt for data input, basis functions etc.

Superceded by ospNewCalibrate, which prompts for necessary values.

3.6 ospCentroid - To calculate the centroid position and its standard
deviation for a subaperture

INVOCATION :

 ospCentroid(buffp,x0,xdiff,y0,ydiff,disp,mean,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

> calibpath char * path to directory of calibration data

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

> buffp float * pointer to input frame buffer

> x0 int x coord of bottom left pixel of subap

> xdiff float x offset of null position from x0

Description of ospLib functions

12 of 46 wfs_sbh_004/01

FUNCTION VALUE : void

PURPOSE : To calculate the centroid position and its standard deviation for a subaperture

DESCRIPTION : The centroid position in a subaperture is calculated using moments, and
the standard deviation estimated, taking into consideration the uncertainty estimated in the
choice of threshold value for that subaperture. x0,xdiff,y0,ydiff may be obtained as four
consecutive elements of the wfsSpecific->centres[] array, taking care to cast x0 and y0 as
ints. Knowledge of (x0,y0) allows the function to index to the correct start point in the
frame for the subaperture, and thence to calculate the moments for each pixel relative to the
null position as specified by xdiff and ydiff in the subaperture, given knowledge of the sub-
aperture geometry (e.g. size) from wfsSpecific. The displacements of the centroid in x and y
are given by nomalising the x and y sums of the moments by the total intensity in the subap-
erture. If, for whatever reason, the total intensity in a subaperture should be zero, the dis-
placements are set to zero and the standard deviations set to 99. The displacements and
variances of the spot centroid are returned through the disp[] array: disp[0] = x displacement
disp[1] = variance of disp[0] disp[2] = y displacement disp[3] = variance of disp[2] N.B. if
a subaperture has no light in it, its centroid x and y displacements are set to zero, and the
variances are returned as 99.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.7 ospCentroidWrapper - To threshold the frame and repeatedly
apply the ospCentroid() function to every subaperture with a
specified centre

INVOCATION :

 ospCentroidWrapper(buffp,wfsSpecific)

> y0 int y coord of bottom left pixel of subap

> ydiff float y offset of null position from y0

< disp float * 4 element array returning centroid

isplacement and variance

> mean float value subtracted from above threshold

pixels

> wfsSpe-
cific

struct
OSP_CONTEXT *

 wfs context structure

Description of ospLib functions

 wfs_sbh_004/01 13 of 46

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To threshold the frame and repeatedly apply the ospCentroid() function to
every subaperture with a specified centre

DESCRIPTION : Reads the array of centres and invokes ospCentroid() for each complete
set of x0, xoffset, y0, yoffset, and stores all the centroid positions as a vector wfsSpecific->s
of x and y displacements of the centroid and a vector wfsSpecific->dssq of the x and y vari-
ances. If the weight argument is set to 1, the x and y displacements in s are replaced by val-
ues weighted by the reciprocal of the respective standard deviations. NB this weighting will
be changed to something more...correct.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999 The weighting (in this sense) has
been removed, but not yet replaced. (27/1/99, SBH)

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That ospCalculateSubaps has generated the centres[] array.

INCLUDE FILES : osp.h

DEFICIENCIES : Need to read the return values from ospCentroid and ospThreshold

3.8 ospChangeGeometry - To adapt the wfs context to changes in
detector readout geometry

INVOCATION :

 ospChangeGeometry(ospGeom,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

! buffp float * pointer to input buffer containing

image of SH spots

! wfsSpe-
cific

struct OSP_CONTEXT
*

 pointer to wfs context structure

int A status value equal to OK or ERROR

> ospGeom struct
OSP_GEOMETRY *

 structure containing modifications

to the detector readout geometry

! wfsSpe-
cific

struct OSP_CONTEXT
*

 wavefront sensor context structure

int A status value equal to OK or ERROR

Description of ospLib functions

14 of 46 wfs_sbh_004/01

PURPOSE : To adapt the wfs context to changes in detector readout geometry To allow
the wfs software to adapt correctly to changes in the detector readout geometry, to the values
specified in ospGeom.

DESCRIPTION : Updates the wfs context structure, checks for consistency of the new
parameters, recalculates subtractive and multiplicative subframes to correspond with new
readout geometry. If wfsSpecific->framesizeflag = 1 the ccd readout geometry reverts to the
default values, i.e. the values read in from the appropriate .ini file when the wfs context
structure was created by ospInit- with the exception of the value of framesizeflag which
may have been set to zero in the .ini file, but now will be 1.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known.

3.9 ospCoAdd - To co-add frames, either a specified number or
timeout period's worth

INVOCATION :

 ospCoAdd (buffp, N, deltaT,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To co-add frames, either a specified number or timeout period's worth

DESCRIPTION : Is called repeatedly to coadd N frames, with the first call (as indicated
by a frame counter, which is part of the wfs context structure, being set to zero) initialising a
frame buffer with the input frame, starting a clock and incrementing the frame counter. The
frame counter is initially set to zero either by ospInit or the successful conclusion of a series
of coadds. Repeated calls check the clock, and if the timeout period has not been reached,

> buffp float * pointer to buffer for frame to be added

> N int Number of frames to be co-added

> deltaT float Timeout period for summation of

frames in seconds

! wfsSpe-
cific

struct OSP_CONTEXT
*

 pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 15 of 46

the current input frame is added to the coadded frame buffer and the frame counter incre-
mented, until the specified number of frames is reached. The start time and counter are
stored as part of the wfs context structure. When either the specified number of frames or
timeout is reached, the coadded frame buffer has each pixel divided by the number of
frames, and ospMeasure is called to calculate Zernikes etc. The Zernike coefficients and
their estimated errors are written to the TCS, and the frame counter is set to zero so the next
cycle can begin.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h time.h

DEFICIENCIES : Need to get the return values of ospMeasure and writeWfsToTcs! Also
the clock() function may not be defined in VxWorks, and thus the timeout will not work. In
VxWorks the time should be derived from the Bancomm card.

3.10 ospConvertAndScrambleFITS - To convert a float FITS image to
ushort int, scramble it and write it to file

INVOCATION :

 ospConvertAndScrambleFITS(infile, outfile, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To convert a float FITS image to ushort int, scramble it and write it to file
This was written initially to generate test data of the same format as would be expected from
a ccd after a frame callback, from our readily available unscrambled float images.

DESCRIPTION : The input file is opened and the NAXIS1 and NAXIS2 keywordss read
from the FITS header to check if the dimensions are consistent with the current detector
readout geometry as stored in the context structure. If not, the function exits with a warning;
if so, two buffers of the appropriate size are allocated, one for the input float image, the other
for the output scrambled unsigned short int image. The input image is read into its buffer
from infile, and then both scrambled and converted to unsigned short int by a call to osp-
FrameScramble. The resultant image is written to a FITS file, and the current detector read-
out geometry added to the header. The buffers are freed.

infile char * name of input file

outfile char * name of output file

wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR.

Description of ospLib functions

16 of 46 wfs_sbh_004/01

Author : Steven Heddle, UKATC, Edinbu>rgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : none known

3.11 ospFGCentroidWrapper - To perform offset correction,
thresholding and centroiding on a data frame quickly for fast
guiding

INVOCATION :

 ospFGCentroidWrapper(buffp,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To perform offset correction, thresholding and centroiding on a data frame
quickly for fast guiding

DESCRIPTION : Performs subtraction and multiplication of offset frames, thresholding
and centroiding of the resultant frame, and estimation of the variances of the centroid posi-
tions. These calculated values are stored directly in the wfsSpecific->s[] and wfsSpecific-
>dssq[] arrays of the context structure. NB if a subaperture has no light in it, the centroid
position is not updated, which may be advantageous for minor glitches, but the variances are
returned as 99 for the subaperture in this case.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That ospCalculateSubaps has generated the centres[] array.

INCLUDE FILES : osp.h

DEFICIENCIES : Corner averaging of subap pixels for thresholding is not available, error
estimation is simplified

! buffp float * pointer to input buffer containing

image of SH spots

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 17 of 46

3.12 ospFGMeasure - To calculate Zernike coefficients from a frame of
SH spots, and write them to the synchro bus

INVOCATION :

 ospFGMeasure(buffp,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To calculate Zernike coefficients from a frame of SH spots, and write them to
the synchro bus

DESCRIPTION : Subtractive and multiplicative offset frames are applied to the input
pointed to by buffp, and thresholding and centroiding takes place, through a call to ospFG-
CentroidWrapper. The Zernike coefficients are calculated and stored in the wfs context
structure. Measurement variances are calculated and added to the fitting variances and the
square root taken to give the error estimates for the Zernike coefficients, which are also
stored in the wfs context structure. Under vxWorks, the Zernike coefficients and their stand-
ard deviations are written to the synchro bus. The input frame buffer is unmodified.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Need to check the return values of the functions called. Corner averag-
ing for thresholding is not available. Error estimation is simplified, compared with osp-
Measure.

3.13 ospFitVars - To estimate the fitting variances of the calculated
Zernike coefficients

INVOCATION :

 ospFitVars(v, w, wfsSpecific)

> buffp float * input frame buffer

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

18 of 46 wfs_sbh_004/01

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To estimate the fitting variances of the calculated Zernike coefficients

DESCRIPTION : Variance derived from the fitting error is derived from matrices [v] and
[w]. The equation used may be found in 'Numerical recipes in C' page 677, equation
15.4.19. Equations and page numbers are wrt the second edition- in all editions the equation
may be found under the 'Solution by use of Singular Value Decomposition' subsection of the
'General Linear Least Squares' section of the 'Modeling (sic) of Data' chapter. The values
calculated are stored in the context structure. As the fitting variances are only calculated at
the same time as the control matrix, ospInit will generally just read the fvars values from
file, rather than apply this function. The values as calculated here may be written to such a
file using ospWriteVectorToFile, as is done in ospCalibrate.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Could benefit from checking for divide by zero from w[]. However the
calculation of the control matrix by ospCalibrate ensures that w[] is real and positive.

3.14 ospFrameScramble - Scramble an entire frame of data

INVOCATION :

 ospFrameScramble (xPixels, yPixels, outputs, inBuffer, outBuffer)

PARAMETERS : (">" input, "!" modified, "<" output)

> v float ** matrix from SVD of reconstructor

> w float * vector of diagonal elements of

matrix from SVD of reconstructor

! wfsSpe-
cific

struct
OSP_CONTEXT *

 pointer to wfs context structure

int A status value equal to OK

> xPixels const int Number of columns

> yPixels const int Number of rows

> outputs const int Number of detector outputs (2 or 4)

Description of ospLib functions

 wfs_sbh_004/01 19 of 46

FUNCTION VALUE :

PURPOSE : Scramble an entire frame of data

DESCRIPTION : This function takes a simulated frame of data and scrambles the pixels
into the order they are read from the detector.

ACKNOWLEDGEMENTS : This function is almost identical to detFrameScramble,
except that uint16 has been explicitly declared as unsigned short int, and the interim error
handling is simpler. This function is based around the LeachDeScramble (lds) program pro-
vided by Les Saddlemyer and Tim Hardy, Hertzberg Institute of Astrophysics, Canada.

EXTERNAL VARIABLES : None. (The function needs to be reentrant)

PRIOR REQUIREMENTS : inBuffer must point to a buffer containing xPixels*yPixels
floating point values. outBuffer must point to a buffer large enough to contain at least xPix-
els*yPixels unsigned short integer values.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.15 ospFrameTypeConvert - To convert a frame of floats to a frame of
unsigned short ints, or vice-versa

INVOCATION :

 ospFrameTypeConvert (usbuffp, fbuffp, mode, buffsize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To convert a frame of floats to a frame of unsigned short ints, or vice-versa

> inFrame float * Pointer to input frame buffer

< outBuffer unsigned short int * Pointer to output frame buffer

int A status value equal to OK or ERROR

> or < usbuffp char * pointer to buffer of unsigned short ints

< or > fbuffp char * pointer to buffer of floats

> mode char * direction of type conversion

> buffsize int size of frame

int A status value equal to OK or ERROR

Description of ospLib functions

20 of 46 wfs_sbh_004/01

DESCRIPTION : Takes a buffer of unsigned short ints, and copies and casts it into a buffer
of floats if mode is ">", or vice-versa if mode is "<".

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS : That arrays of the required size (i.e. greater than or equal to
buffsize) have been allocated .

INCLUDE FILES : osp.h

DEFICIENCIES : none known

3.16 ospGetBasisFunction - To populate the matrix which defines an
arbitrary basis set in terms of their Zernike composition

INVOCATION :

 ospGetBasisFunction (f,i,znum,mag)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To populate the matrix which defines an arbitrary basis set in terms of
Zernike polynomials and their coefficients

DESCRIPTION : Puts an element into a matrix. This process must be tied in to ospCali-
brate and also linked with the vector (or file containing the vector) of the numbered basis
function for which we are storing the Zernike coefficients.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : f[][] must be intialised as identically zero, and of the appro-
priate dimensions, as is done in ospCalibrate.

INCLUDE FILES : osp.h

! f float ** output matrix showing basis functions in terms of Zernike coefficients

> i int index of component, equal to index of actual Zernike function

> znum int index of component, equal to index of arbitrary function

> mag float size of component

void

Description of ospLib functions

 wfs_sbh_004/01 21 of 46

DEFICIENCIES : Incomplete, never tested...

3.17 ospGlobalCentroid - To determine the centroid of an entire frame,
in pixels

INVOCATION :

 ospGlobalCentroid(buffp, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE : void

PURPOSE : To determine the centroid of an entire frame, in pixels

DESCRIPTION : Uses moments to calculate the centroid of an entire frame. As ever, the
coordinate system for the entire frame is x-y, in units of pixels, with the centre of the bottom
left hand pixel in the frame (1,1).

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.18 ospGlobalThreshold - To apply a common threshold to an entire
frame

INVOCATION :

 ospGlobalThreshold(buffp, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

! buffp float * pointer to input frame buffer

! wfsSpecific struct OSP_CONTEXT pointer to wfs context structure

! buffp float * pointer to input frame buffer

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

Description of ospLib functions

22 of 46 wfs_sbh_004/01

void

PURPOSE : To apply a common threshold to an entire frame

DESCRIPTION : The threshold is supplied as wfsSpecific->thresh. Pixels above this
threshold have it subtracted from their value. Pixels below this threshold have their values
set to 0.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.19 ospInit - To create and initialise a wfs context structure

INVOCATION :

 wfsSpecific = ospInit(wfsName,ospGeom)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To create and initialise a wfs context structure

DESCRIPTION : A wfs context structure is created, with its pointer the return value of
the function. The .ini file named as wfsName is read, and the values read in either directly
initialise elements of the context structure, or are names of files which in turn are read to ini-
tialise elements. The context structure is/will be documented in the osp.h header file, but
includes the ccd readout geometry, the null positions of the SH spots, the control matrix,
frames of subtractive and multiplicative offsets which are to be applied to subsequent frames
of SH spots, measured spot displacements, fitting and measurement variances, and ulti-
mately, calculated Zernike coefficients. The values for the ccd readout geometry read in
from the .ini file are also stored in the structure as default values which will be reverted to
should ospChangeGeometry be called with the framesizeflag element of its argument equal
to 1 (full frame). This behaviour should perhaps be modified as it limits us to a single full
frame readout geometry, unless we modify the .ini file and call ospInit again. The ospGeom
structure allows the ccd readout geometry to be modified for reduced frames on calling
ospInit, but as this is carried out by ospChangeGeometry the same restriction on the full

> wfsName char * name of the .ini file to be read

> ospGeom struct OSP_GEOMETRY * pointer to ccd readout geometry structure

struct OSP_CONTEXT * pointer to wfs context structure

Description of ospLib functions

 wfs_sbh_004/01 23 of 46

frame readout using the default values applies. Full frame versions of the offset frames are
stored in the wfs context structure, from which any versions for reduced frame readout may
be calculated, and also stored in the wfs context structure. If no ospGeom structure modify-
ing the readout geometry is necessary on initialisation, supply NULL instead. Much mem-
ory allocation takes place during this function- remember to use the companion function
ospTidyUp(wfsSpecific) to deallocate the memory and destroy the pointer to the structure.
The pointer to the ospGeom structure is freed separately.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.20 ospMeasVars - To estimate the measurement variances of the
calculated Zernike coefficients

INVOCATION :

 ospMeasVars(wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To estimate the measurement variances of the calculated Zernike coefficients

DESCRIPTION : Variance derived from measurement errors in the vector ds of SH spot
displacements is obtained from the sum of squares of the (elements of ds multiplied by the
appropriate row of [c]) for each Zernike coefficient. The values calculated are stored in the
context structure.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK.

Description of ospLib functions

24 of 46 wfs_sbh_004/01

DEFICIENCIES : None known

3.21 ospMeasure - To accept an input frame of SH spots and calculate
the Zernike coefficients

INVOCATION :

 ospMeasure(buffp,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To accept an input frame of SH spots and calculate the Zernike coefficients

DESCRIPTION : The subtractive and multiplicative offset frames are applied to the input
pointed to by buffp. Thresholding and centroiding then takes place through a call to ospCen-
troidWrapper, and the Zernike coefficients are calculated and stored in the wfs context struc-
ture. Measurement variances are calculated and added to the fitting variances and the square
root taken to give the error estimates for the Zernike coefficients, which are also stored in the
wfs context structure. NB The input buffer, on exit has had the subtractive and multiplicative
offsets applied, and has been thresholded.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Need to check the return values of the functions called. Slower than
ospFGMeasure.

3.22 ospMultiplyFrameByConstant - To multiply each pixel in a frame
by the same specified amount

INVOCATION :

 ospMultiplyFrameByConstant(buffp1,constname,wfsSpecific)

! buffp float * input frame buffer

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 25 of 46

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To multiply each pixel in a frame by the same specified amount

DESCRIPTION : Multiplies each pixel in an existing frame buffer pointed to by buffp1
by the floating point value constname. The frame is assumed to be wfsSpecific->xframesize
by wfsSpecific->yframesize. No checking of the frame size is done, due to the function's
intended use of making corrections to fast guide data frames, which requires low latency.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the pointer points to a buffer which is already allocated
and large enough.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.23 ospMultiplyFrameByFrame - To multiply a frame by an existing
frame of the same size, pixel by pixel

INVOCATION :

 ospMultiplyFrameByFrame(buffp1,buffp2,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To multiply a frame by an existing frame of the same size, pixel by pixel

! buffp1 float * pointer to buffer to be multiplied

> constname float multiplying constant

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

! buffp1 float * pointer to existing frame which is to be modified by
multiplication

> buffp2 float * pointer to frame by which existing frame is to be mul-
tiplied

> wfsSpe-
cific

struct
OSP_CONTEXT *

 pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

26 of 46 wfs_sbh_004/01

DESCRIPTION : Multiplies an existing frame buffer pointed to by buffp1 by another,
pointed to by buffp2. The frames are both assumed to be wfsSpecific->xframesize by
wfsSpecific->yframesize. The multiplication is done pixel by pixel. No checking of the
frame size is done, due to the function's intended use of making corrections to fast guide
data frames, which requires low latency.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the pointers point to buffers which are already allo-
cated and large enough.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.24 ospNewCalibrate - To populate a reconstructor matrix and invert
to obtain control matrix

INVOCATION :

 ospNewCalibrate(calibpath, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To populate a reconstructor matrix and invert to obtain control matrix

DESCRIPTION : This differs from ospCalibrate in that the files and information required
are prompted for. Calibration frames of displaced SH spots corresponding to linearly ide-
pendent combinations of known Zernike aberrations are used to form a reconstructor matrix
with respect to the basis functions defined by the linear combinations. This reconstructor
matrix is transformed into one with respect to the individual Zernike polynomials of unit
magnitude, and further inverted to provide the necessary control matrix which is applied to
the SH spot displacements in an arbitrary input frame to yield the Zernike coefficients. The
control matrix is written to a file specified by the character string wfsSpecific->controlfile,
and the calculated fitting variances written to a file specified by the character string wfsSpe-
cific->fvarsfile. If either of these files exist, they are copied to a file with a .bak extension
added, befeore the new version is created.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

> calibpath char * path to directory of calibration data

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 27 of 46

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : Not general enough-need to prompt for data input, basis functions etc.

3.25 ospNewReadCentres - To calculate coordinate data for the
subaperture null positions from data stored in file

INVOCATION :

 ospNewReadCentres(nullfile,centres,side,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To calculate coordinate data for the subaperture null positions from data
stored in file

DESCRIPTION : This function is essentially a wrapper for the two functions ospRead-
Nulls and ospCalculateSubaps, and was written as an intermediate stage in the evolution of
these two functions from the previous ospReadCentres, which read from a file containing
different data in another format. Essentially, the null positions are read from a file, coordi-
nates relative to the whole array, in pixels, and negative coordinates supplied for the subap-
ertures to be ignored... for more information see ospReadNulls. The postions of the bottom
left hand corners of the subapertures are calculated, given the values of the detector readout
geometry stored in the context structure, and the offsets of the given null positions from
these coordinates calculated for each subaperture. This information is stored in the wfsSpe-
cific->centres array, and here is copied to the centres argument.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

> nullfile char * name of file containing null positions of the SH spots
in the subapertures

< centres float * pointer to array containing the coordinates of the sub-
apertures bottom left hand corners, and the relative
offsets of the null positions (in pixels)

> side int side length of subap, in pixels

! wfsSpe-
cific

struct
OSP_CONTEXT *

 pointer to wfs context structure

int A status value equal to OK

Description of ospLib functions

28 of 46 wfs_sbh_004/01

INCLUDE FILES : osp.h

DEFICIENCIES : Possibly irrelevant

3.26 ospNullCorrection - To provide a simple interface by which the
null positions file can be corrected using a FITS image of nulled
spots

INVOCATION :

 ospNullCorrection(wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To provide a simple interface by which the null positions file can be corrected
using a FITS image of nulled spots

DESCRIPTION : The function issues a series of prompts for data which allows the null
positions file to be corrected given a FITS image of nulled spots. Invocation of the function
is particularly simple, and the first prompt allows the functionality of this function to be
bypassed in the event of of the current nullfile being known to be accurate. If null correction
is to take place, the readout geometry of the OSP_CONTEXT structure is changed to full
frame (all calibration must take place wrt full frame data to cope with all geometries of the
reduced frames) and the output from ospCalculateSubaps which is called as a consequence
allow the next prompt (asking if the current nullfile is approximately accurate) to be
answered: yes, if the subapertures with no null positions are those we have chosen to ignore,
and if no 'Badly centred null position' warnings are present; no, otherwise. If yes, the
filename of a full frame float FITS image showing the nulled SH spots is prompted for. As
this file may be older and have had the dark and flat field applied already, an option is given
to avoid the application of the current subtractive and multiplicative offset frames. The cal-
culation of the corrections is performed by a call to ospSaveNullPositions, which backs up
the current nullfile with a .bak suffix, writes the new values into a file with the same name as
the original nullfile to save editing the .ini file, and applies the new null positions to the
OSP_CONTEXT structure, which is reset to its original readout geometry proir to exit. This
function may typically be called prior to ospNewCalibrate. See also the header of ospSave-
NullPositions for more details of the nullfile format.

EXTERNAL VARIABLES : None

EXTERNAL REFERENCES : fitsio library

INCLUDE FILES : osp.h

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 29 of 46

DEFICIENCIES : None known

3.27 ospPrintError - To report cfitsio errors, as related to the status
codes in fitsio.h

INVOCATION :

 ospPrintError(status)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To report cfitsio errors, as related to the status codes in fitsio.h

DESCRIPTION : Receives a status code from the cfitsio function which calls it, prints the
appropriate error report, and returns an ERROR value.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : fitsio.h

DEFICIENCIES : None known

3.28 ospPrintHeaders - To print out all the header keywords in all
extensions of a FITS file

INVOCATION :

 ospPrintHeaders(infile)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

> status int status value relevant to cfitsio functions

int A status value equal to ERROR.

> infile char * name of input file

int A status value equal to OK or ERROR

Description of ospLib functions

30 of 46 wfs_sbh_004/01

PURPOSE : To print out all the header keywords in all extensions of a FITS file

DESCRIPTION : Function taken from cfitsio library and modified slightly. Prints out all
the keywords records from all HDUs in a FITS file until an EOF is is encountered.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : fitsio.h

DEFICIENCIES : None known

3.29 ospReadFloatImage - To read a float image into a buffer from a
FITS file

INVOCATION :

 ospReadFloatImage(buffp,infile,buffsize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To read a float image into a buffer from a FITS file

DESCRIPTION : The FITS file is opened and the NAXIS keywords read to get the image
size. If the size is greater than buffsize, only enough of the image to fill the buffer is read in.
If the image is smaller than or equal to the size of the buffer, the whole image is read in. No
padding to fill any unassigned elements of the buffer takes place, as the image dimensions
for any subsequent processing should be strictly controlled to match the xframesize and
yframesize dimensions specified in the context structure. The FITS file is then closed. This
function was written primarily for input of test data, but is also used for input of the offsets
frames- it may benefit from also taking the context strtucture as an argument, to enable
checking of the image dimensions.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

< buffp float * pointer to buffer for image read in

> infile char * name of input FITS file

> buffsize int size of frame buffer

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 31 of 46

PRIOR REQUIREMENTS : That the buffer pointed to by buffp has been allocated large
enough to accomodate buffsize floats

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : None known

3.30 ospReadHeaderInt - To read the integer values of an array of
keywords from a FITS header

INVOCATION :

 ospReadHeaderInt (filename,numelem,keynames,values)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To read the integer values of an array of keywords from a FITS header

DESCRIPTION : Uses functions from the cfitsio library to open a FITS file for reading,
and read the values of specified keywords with integer values. The keywords elements of an
array, and their values are read into the corresponding elements of an array of integers. The
number of elements of the keyword array may exceed the number of keywords actually
present, but obviously not the number of array elements allocated. The keywords should be
consecutive elements of their array, as reading of keywords will end when a NULL value is
encountered as a keyword. The file is closed when reading is finished.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : Restricted to keywords with integer values.

> filename char * name of FITS file whose header is being read

> numelem int maximaum number of keywords to be read

> keynames char ** name of array of keywords

< values int * array of integer values of keywords

int A status value equal to OK or ERROR

Description of ospLib functions

32 of 46 wfs_sbh_004/01

3.31 ospReadNulls - To read the coordinates of the null positions from
a file

INVOCATION :

 ospReadNulls(nullfile, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To read the coordinates of the null positions from a file

DESCRIPTION : The file named nullfile is opened, and the null positions for the subaper-
tures stored in it read into the wfsSpecific->nulls[] structure elements. The null positions are
in units of pixels, and are relative to the bottom left hand corner of the CCD array. The cen-
tre of the bottom left hand pixel in the array has coordinate (1,1). The data is stored in the
file with two records per line, separated by a space, corresponding to the x and y coordinate,
and each line corresponding to a subaperture. The data are read into wfsSpecific->nulls in
the order wfsSpecific->nulls[0] = first x coordinate, wfsSpecific->nulls[1] = first y coordi-
nate, wfsSpecific->nulls[2] = second x coordinate etc. The lines of data are ordered to
match the order in which the subaperture coordinates are subsequently calculated: the null
position coordinates for the bottom left subaperture are first, then the subaperture along the
bottom row from left to right, moving up a row at a time. By way of example, for a 3 x 3
array of subapertures, they would be ordered as follows:

Subapertures for which a centroid is not to be calculated, and/or for which a null position
may not be calculated (e.g. they may lie outwith the illuminated field) still require a line of
data corresponding to coordinates to be input- these coordinates however should be negative
to indicate that the subaperture is to be subsequently ignored. The pairs of subapertures are
read until an EOF is encountered, or until the limit set by OSP_SUBAPSMAX in osp.h is
reached. The number of pairs of coordinates is checked to be consistent with the number of
subapertures specified by the ccd readout geometry stored in wfsSpecific, and an ERROR
returned instead of OK, after closing the file.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

> nullfile char * name of file containing the null positions of the SH
spots in the subapertures

! wfsSpe-
cific

struct
OSP_CONTEXT *

pointer to wfs context structure

int A status value equal to OK or ERROR

 7 8 9

 4 5 6

 1 2 3

Description of ospLib functions

 wfs_sbh_004/01 33 of 46

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.32 ospReadUShortImage - To read an unsigned short int image into a
buffer from a FITS file

INVOCATION :

 ospReadUshortImage(buffp,infile,buffsize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To read an unsigned short int image into a buffer from a FITS file

DESCRIPTION : The FITS file is opened and the NAXIS keywords read to get the image
size. If the size is greater than buffsize, only enough of the image to fill the buffer is read in.
If the image is smaller than or equal to the size of the buffer, the whole image is read in. No
padding to fill any unassigned elements of the buffer takes place, as the image dimensions
for any subsequent processing should be strictly controlled to match the xframesize and
yframesize dimensions specified in the context structure. The FITS file is then closed. This
function was written primarily for input of test data, but may benefit from also taking the
context strtucture as an argument, to enable checking of the image dimensions.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS : That the buffer pointed to by buffp has been allocated large
enough to accomodate buffsize unsigned short ints

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : None known

< buffp unsigned short int * pointer to buffer for image read in

> infile char * name of input FITS file

> buffsize int size of frame buffer

int A status value equal to OK or ERROR

Description of ospLib functions

34 of 46 wfs_sbh_004/01

3.33 ospReduceFits - To generate a reduced frame FITS file from a full
frame FITS file

INVOCATION :

 ospReduceFits(infile, outfile, wfsSpecific, buffsize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To generate a reduced frame FITS file from a full frame FITS file

DESCRIPTION : Buffers for the full and reduced frame are dynamically allocated. The
full frame FITS file is read into the full frame buffer, and ospMeasure is called to write the
reduced version to the reduced frame buffer, which is then written to a FITS file named out-
file. The structure element framesizeflag is set to zero (corresponding to a reduced frame)
and the geometric parameters of the CCD readout used to reduce the frame are written to
the FITS header by calling ospAddContextToHeader. framesizeflag is restored to its entry
value and the buffers are freed.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None.

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h, fitsio.h

DEFICIENCIES : FITS header from original file not copied to new reduced file, thus los-
ing the user specified keyword information from the original. Reads and writes float images
specifically- a future modification should read the BITPIX keyword from the input FITS file
and react accordingly. No provision for binning of pixels into superpixels.

3.34 ospReduceFrame - To reduce the frame size to the minimum
containing all subaperture pixels

INVOCATION :

 ospReduceFrame (buffp, newbuffp, wfsSpecific, buffsize)

> infile char * name of input full frame FITS file

< outfile char * name of output reduced frame FITS file

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

> buffsize int buffer size for reduced frame

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 35 of 46

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To reduce the frame size to the minimum containing all subaperture pixels To
reduce the size of the data frame by removing the pixels which lie outwith the square which
contains the subapertures, and also the pixels which lie on the lines between the subaper-
tures. Thus a full frame of 80x80 pixels with a 6x6 array of subapertures each of 6x6 pixels
will be reduced to a an 36x36 subframe. This function has been written to enable reduced
frame versions of the offset frames to be generated from their full frame versions in
response to any change of detector readout geometry, and also to enable testing of realistic
readout geometries from full frame data.

DESCRIPTION : The function uses the geometric parameters specified by the sectors,
xstart, ystart, xbin, ybin, xraster, yraster, xspace, yspace, xsubap, ysubap, xarraysize and
yarraysize elements of the OSP_CONTEXT structure to calculate the (full frame) coordi-
nates of the pixels which lie within the grid of subapertures, and then calculates the new
coordinates for the reduced frame, such that (xstart+1, ystart+1) becomes (1,1), and the sub-
apertures are immediately adjacent to one another. The symmetry requirements imposed by
either the two or four sector readouts are observed in the calculation of the subaperture coor-
dinates, in the same manner as ospCalculateSubaps. xtail and ytail are calculated but no test-
ing is done to see if they are realisable physically- this testing is done in ospInit or
ospChangeGeometry.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS : That the OSP_CONTEXT structure has been updated to
correspond with the current geometric parameters for the CCD readout. It is not necessary
for structure element framesizeflag to be set to 0, corresponding to a reduced frame.

INCLUDE FILES : osp.h

DEFICIENCIES : No provision for binning of pixels into superpixels.

3.35 ospSaveNullPositions - To create or update null positions data
from a calibration file

INVOCATION :

> buffp float * pointer to full frame as input

< newbuffp float * pointer to reduced frame

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

> buffsize int buffer size for reduced frame

int A status value equal to OK or ERROR

Description of ospLib functions

36 of 46 wfs_sbh_004/01

 ospSaveNullPositions(nullname,outfile, wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To create or update null positions data from a calibration file

DESCRIPTION : The calibration frame is read from a FITS file, with the NAXIS1 and
NAXIS2 keyword values read to ensure that we are dealing with full frame data. Centroid-
ing is carried out to determine the centroid positions, which here are corrections to the cur-
rent null positions. These corrections are added to the current null values and written out to
a file. We use a 'null' file of x and y coordinates relative to the bottom left hand corner of the
whole array, which is read in and the bottom left corner positions of the subapertures gener-
ated from knowledge of the detector geomemtry, and the corresponding xoff, yoff values
calculated. As the subaperture positions are calculated in order from left to right and from
top to bottom with no prior knowledge of which subapertures are unused, unused subaper-
tures are indicated with a null position of -1,-1.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Should save previous nullfile before overwriting, just in case.

3.36 ospShow - To display the current values of the wfs context

INVOCATION :

 ospShow(wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

> nullname char * name of full frame FITS image from which null posi-
tions are to be read

> oflag int determines whether offsets are to be applied
OFFSET_CORRECTION = 1,
NO_OFFSET_CORRECTION=0

> outfile char * name of modified nullfile

! wfsSpe-
cific

struct
OSP_CONTEXT *

 pointer to wfs context structure

int A status value equal to OK or ERROR

> wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

Description of ospLib functions

 wfs_sbh_004/01 37 of 46

FUNCTION VALUE :

PURPOSE : To display the current values of the wfs context

DESCRIPTION : Generates a neatly formatted summary of most of the context structure's
current values on standard output. Parameters reported are:

osp structure: wfsSpecific

SECTORS : wfsSpecific->sectors

XSTART : wfsSpecific->ospxstart

YSTART : wfsSpecific->ospystart

XBIN : wfsSpecific->ospxbin

YBIN : wfsSpecific->ospybin

XRASTER : wfsSpecific->ospxraster

YRASTER : wfsSpecific->ospyraster

XSPACE : wfsSpecific->ospxspace

YSPACE : wfsSpecific->ospyspace

XSUBAP : wfsSpecific->ospxsubap

YSUBAP : wfsSpecific->ospysubap

OSP_FSZ (0:reduced,1:full frame) : wfsSpecific->framesizeflag

Number of Zernikes (np) : wfsSpecific->np

2*TOTAL number of subaps (mp) used : wfsSpecific->mp

xarraysize (in pixels) : wfsSpecific->xarraysize

yarraysize (in pixels) : wfsSpecific->yarraysize

xframesize (in pixels) : wfsSpecific->xframesize

yframesize (in pixels) : wfsSpecific->yframesize

side length of subap (in pixels) : wfsSpecific->side

size of buffer for frame : wfsSpecific->buffsize

nsigma (used in ospThreshold) : wfsSpecific->nsigma

Read noise per subaperture,squared : wfsSpecific->readsq

Weighting applied? (0:no, 1:yes) : wfsSpecific->weight

Threshold parameter : wfsSpecific->thresh

Coaddcounter (frames coadded -1) : wfsSpecific->coaddcounter

WfsSource (wfs id) : wfsSpecific->wfsSource

WfsMode (AO = 0, FG = 1) : wfsSpecific->wfsMode

int A status value equal to OK or ERROR

Description of ospLib functions

38 of 46 wfs_sbh_004/01

Centres data : number of centres*4 : wfsSpecific->centres[0] :

x0, xoff, y0, yoff : wfsSpecific->centres[]...

Control matrix used (first 10 cols): wfsSpecific->c[][]...

Displacements s-x, ds-x, s-y, ds-y : wfsSpecific->s[]...

Fitting variances : wfsSpecific->fvars[]...

Measurement variances : wfsSpecific->mvars[]...

Zernikes calculated : wfsSpecific->z[]...

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Should test if the structure is NULL

3.37 ospSimulateCentroids - To generate centroid data for a specified
combination of Zernike functions

INVOCATION :

 ospSimulateCentroids(matr,vect)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To generate centroid data for a specified combination of Zernike functions

DESCRIPTION : Using displacements for normalised model Zernike functions, the speci-
fied combination is built up by addition of the scaled displacements from each individual
Zernike function, stored in the form of a reconstructor matrix, The scale factor is prompted
for on the standard output and suppplied on the standard input.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

> matr float ** reconstructor matrix relative to basis functions of Zernike polynomials
in ascending order starting with tip, tilt, focus...

< v float * vector of displacements (in pixels) corresponding to specified combina-
tion of Zernike polynomials

void

Description of ospLib functions

 wfs_sbh_004/01 39 of 46

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Should implement error checking to ascertain that none of the columns
of the matrix matr are zero vectors

3.38 ospSubtractFrameFromFrame - To subtract a frame from an
existing frame of the same size, pixel by pixel

INVOCATION :

 ospSubtractFrameFromFrame(buffp1,buffp2,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To subtract a frame from an existing frame of the same size, pixel by pixel

DESCRIPTION : Subtracts a frame pointed to by buffp2 from an existing frame buffer
pointed to by buffp1. The frames are both assumed to be wfsSpecific->xframesize by
wfsSpecific->yframesize. The subtraction is done pixel by pixel. No checking of the frame
size is done, due to the function's intended use of making corrections to fast guide data
frames, which requires low latency.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the pointers point to buffers which are already allo-
cated and large enough.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

! buffp1 float * pointer to buffer from which frame is to be subtracted

> buffp2 float * pointer to buffer containing frame to be subtracted

> wfsSpe-
cific

struct OSP_CONTEXT
*

 pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

40 of 46 wfs_sbh_004/01

3.39 ospTestData - To generate a known test frame of data

INVOCATION :

 ospTestData (buffp,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To generate a known test frame of data

DESCRIPTION : Generates a linear ramp of increasing intensity in the x direction.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS : That the buffer pointed to by buffp has been allocated large
enough to accomodate wfsSpecific->xarraysize x wfsSpecific->yarraysize floats.

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.40 ospThreshold - To estimate and/or impose a threshold for each
subaperture to reduce the effects of noise

INVOCATION :

 ospThreshold(buffp, meanval,wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

! buffp float * pointer to output buffer containing test frame

> wfsSpecific struct OSP_CONTEXT * wfs context structure

void

! buffp float * pointer to frame buffer

< meanval float * pointer to array of intensity values subtracted from
above threshold pixels in each subap

! wfsSpe-
cific

struct
OSP_CONTEXT *

 pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

 wfs_sbh_004/01 41 of 46

PURPOSE : To estimate and/or impose a threshold for each subaperture to reduce the
effects of noise

DESCRIPTION : Using the readout geometry data from wfsSpecific (particularly that in
wfsSpecific->centres[] which records the coordinates of the bottom left pixel of each subap-
erture) a threshold is applied to each subaperture which is in use, modifying the frame buffer
pointed to by buffp correspondingly. The manner in which the threshold is determined for
each subaperture depends on the value of wfsSpecific->thresh: if it is -1, threshold value for
each subaperture is determined by averaging the intensities of the lowest (intensity) three of
the four corner pixels, calculating their standard deviation and setting the threshold equal to
mean + n * standard deviation, where n is the value specified by wfsSpecific->nsigma; if it
is -3, the threshold value for each subaperture is determined by averaging three pixels at
each corner, calculating their standard deviation and setting the threshold equal to mean +
standard deviation, where etc.; if it is >=0, that value is applied as the threshold; for any
other value, an error is reported and returned. For the first two cases, the threshold is applied
by setting pixel values below it to zero, and subtracting the mean calculated from the corner
pixels from the pixel values above zero. The actual values subtracted are returned in the
array pointed to by meanval. For the third case, the pixel values below threshold are set to
zero, the ones above threshold have threshold subtracted, and the threshold value is returned
in the elements of meanval.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : Would be better integrated into the centroid function.

3.41 ospTidyUp - To free all the memory allocated from the
corresponding ospInit()

INVOCATION :

 ospTidyUp(wfsSpecific)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To free all the memory allocated from the corresponding ospInit()

! wfsSpecific struct OSP_CONTEXT * pointer to wfs context structure

int A status value equal to OK or ERROR

Description of ospLib functions

42 of 46 wfs_sbh_004/01

DESCRIPTION : The memory allocated when wfsSpecific was created using ospInit is
freed, including the memory allocated to contain the structure itself.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : None

PRIOR REQUIREMENTS :

INCLUDE FILES : osp.h

DEFICIENCIES : None known

3.42 ospWriteFloatImage - To write a float image to a FITS file

INVOCATION :

 ospWriteFloatImage(buffp, outfile, xarraysize, yarraysize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To write a float image to a FITS file

DESCRIPTION : A 2-d float image is written as a FITS primary array, with a minimal
header. If the detector geometry is required to be added to the header use ospAddContextTo-
Header.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS : None

INCLUDE FILES : fitsio.h

DEFICIENCIES : None known

> buffp float * pointer to float image to be written to FITS file

> outfile char * name of output FITS file

> xarraysize int number of pixels in x of image

> yarraysize int number of pixels in y of image

int A status value equal to OK or ERROR

Structures used in ospLib

 wfs_sbh_004/01 43 of 46

3.43 ospWriteUShortImage - To write an unsigned short int image to a
FITS file

INVOCATION :

 ospWriteUShortImage(buffp, outfile, xarraysize, yarraysize)

PARAMETERS : (">" input, "!" modified, "<" output)

FUNCTION VALUE :

PURPOSE : To write an unsigned short int image to a FITS file

DESCRIPTION : A 2-d unsigned short int image is written as a FITS primary array, with
a minimal header. If the detector geometry is required to be added to the header use ospAd-
dContextToHeader.

Author : Steven Heddle, UKATC, Edinburgh 18/1/1999

EXTERNAL VARIABLES : none

PRIOR REQUIREMENTS : None

INCLUDE FILES : fitsio.h

DEFICIENCIES : None known

4.0 Structures used in ospLib

4.1 The OSP_CONTEXT structure

struct OSP_CONTEXT{

 char nullfile[OSP_MAXSTR]; /* name of ASCII file of null positions, shows unused
subaps */

 char subfile[OSP_MAXSTR]; /* name of FITS file of subtractive frame offsets */

 char multfile[OSP_MAXSTR]; /* name of FITS file of multiplicative frame offsets*/

 char controlfile[OSP_MAXSTR];/* name of ASCII file containing control matrix */

> buffp unsigned

short int *

 pointer to unsigned short int image to be

written to FITS file

> outfile char * name of output FITS file

> xarray-
size

int number of pixels in x of image

> yarray-
size

int number of pixels in y of image

int A status value equal to OK or ERROR

Structures used in ospLib

44 of 46 wfs_sbh_004/01

 char fvarsfile[OSP_MAXSTR]; /* name of ASCII file containing fitting variances */

 int np; /* number of Zernike coefficients to be calculated */

 int mp; /* number of subapertures to be used */

 int xarraysize; /* x dimension in pixels read out from CCD */

 int yarraysize; /* y dimension in pixels read out from CCD */

 int buffsize; /* size of buffer to store full frame=xarraysize * yarraysize */

 int side; /* number of pixels along side of subaperture (assumed square) */

 int ospxstart; /* current number of pixels skipped before first subap in x*/

 int ospystart; /* current number of pixels skipped before first subap in y*/

 int ospxbin; /* current binning factor for pixels in x */

 int ospybin; /* current binning factor for pixels in y */

 int ospxraster; /* current x size of subaperture in pixels */

 int ospyraster; /* current y size of subaperture in pixels */

 int ospxspace; /* current separation of subapertures in x, in pixels */

 int ospyspace; /* current separation of subapertures in y, in pixels */

 int ospxsubap; /* current number of subapertures per sector in x */

 int ospysubap; /* current number of subapertures per sector in y */

 int defxstart; /* default number of pixels skipped before first subap in x*/

 int defystart; /* default number of pixels skipped before first subap in y*/

 int defxbin; /* default binning factor for pixels in x */

 int defybin; /* default binning factor for pixels in y */

 int defxraster; /* default x size of subaperture in pixels */

 int defyraster; /* default y size of subaperture in pixels */

 int defxspace; /* default separation of subapertures in x, in pixels */

 int defyspace; /* default separation of subapertures in y, in pixels */

 int defxsubap; /* default number of subapertures per sector in x */

 int defysubap; /* default number of subapertures per sector in y */

 int sectors; /* number of sectors readout from CCD array */

 int framesizeflag; /* flag = 0 for reduced frame, 1 for full frame */

 int xframesize; /* x size of frame currently in use */

 int yframesize; /* y size of frame currently in use */

 int framebuffsize; /* size of buffer to store current frame=xframesize*yframesize*/

 float nsigma; /* no. of std. devs above corner pixel average that threshold is applied*/

 float readsq; /* read noise in (e-)(squared) */

Structures used in ospLib

 wfs_sbh_004/01 45 of 46

 int weight; /* flag = 0 for no weighting, = 1 for weighting**UNUSED AT
PRESENT*/

 float thresh; /* threshold value applied to corrected data frame- NB -1 and -3 values */

 float nulls[2*OSP_SUBAPSMAX]; /* null positions read in from nullfile */

 float centres[4*OSP_SUBAPSMAX +1]; /* positions of bottom left corner, and dis-
placement of null position from there, for each subaperture used, in coordinates of reduced
frame */

 double time; /* variable for timestamp */

 float * ffsubbuff; /* pointer to full frame buffer for subtractive offsets */

 float * redsubbuff; /* pointer to reduced frame buffer for subtractive offsets */

 float * ffmultbuff; /* pointer to full frame buffer for multiplicative offsets */

 float * redmultbuff; /* pointer to reduced frame buffer for multiplicative offsets */

 float * err; /* pointer to vector of standard errors */

 float **c; /* pointer to pointer to control matrix */

 float *s; /* pointer to vector of centroid displacements from null positions */

 float *dssq; /* pointer to vector of vraiances of centroid displacements */

 float *fvars; /* pointer to vector of fitting variances */

 float *mvars; /* pointer to vector of measurement variances */

 float *z; /* pointer to vector of Zernike coefficients */

 float * sumbuff; /* pointer to buffer for coadded frames */

 int coaddcounter; /* counter of coadded frames */

 clock_t coaddstart; /* start time for coadding- used to check timeout */

 int wfsSource; /* label of wfs: see enum below */

 int wfsMode; /* label of wfs mode: see enum below */

 float ospdiag[DIAG_ARRAY_SIZE]; /* array of diagnostic values for development */

 float tipscale; /* scaling factor for tip, used in development */

 float tiltscale; /* scaling factor for tilt, used in development */

 float focusscale; /* scaling factor for focus, used in development */

 float tipCor; /* ?, used in development */

 float tiltCor; /* ?, used in development */

};

4.2 The OSP_GEOM structure

struct OSP_GEOMETRY{

 int sectors; /* number of sectors readout from CCD array */

Structures used in ospLib

46 of 46 wfs_sbh_004/01

 int xstart; /* number of pixels skipped before first subap in x*/

 int ystart; /* number of pixels skipped before first subap in y*/

 int xbin; /* current binning factor for pixels in x */

 int ybin; /* current binning factor for pixels in y */

 int xraster; /* x size of subaperture in pixels */

 int yraster; /* y size of subaperture in pixels */

 int xspace; /* separation of subapertures in x, in pixels */

 int yspace; /* separation of subapertures in y, in pixels */

 int xsubap; /* number of subapertures per sector in x */

 int ysubap; /* number of subapertures per sector in y */

 int xarraysize; /* x dimension in pixels read out from CCD */

 int yarraysize; /* dimension in pixels read out from CCD */

 int framesizeflag; /* flag = 0 for reduced frame, 1 for full frame */

};

